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Heat Transfer at a Stretching/Shrinking Surface Beneath an External Uniform Shear 
Flow with a Convective Boundary Condition

(Pemindahan Haba Pada Permukaan Meregang/Mengecut di bawah Aliran Ricih Luar 
yang Seragam dengan Syarat Sempadan Berolak)

FAZLINA AMAN, ANUAR ISHAK & IOAN POP*

ABSTRACT

The heat transfer behaviour of a viscous fluid over a stretching/shrinking sheet driven by a uniform shear in the far field 
with a convective surface boundary condition is studied. The boundary layer equations governing the flow are reduced 
to ordinary differential equations using a similarity transformation. Using a numerical technique, these equations are 
then solved to obtain the temperature distributions and the heat transfer rate at the surface for various values of Prandtl 
number, stretching/shrinking parameter and convective parameter. Dual solutions are found to exist for the shrinking 
case, whereas for the stretching case, the solution is unique. 
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ABSTRAK

Tingkah laku pemindahan haba bagi bendalir likat di atas helaian meregang/mengecut dipandu oleh aliran ricih seragam 
dengan syarat sempadan permukaan berolak dikaji. Persamaan-persamaan lapisan sempadan yang menakluk aliran 
diturunkan kepada persamaan-persamaan pembezaan biasa menggunakan penjelmaan keserupaan. Menggunakan kaedah 
berangka, persamaan-persamaan tersebut kemudian diselesaikan untuk memperoleh taburan suhu dan kadar pemindahan 
haba pada permukaan bagi pelbagai nilai nombor Prandtl, parameter meregang/mengecut dan parameter olakan. 
Penyelesaian dual didapati wujud bagi kes mengecut, manakala bagi kes meregang, penyelesaian adalah unik.

Kata kunci: Aliran ricih; helaian meregang/mengecut; pemindahan haba; penyelesaian dual; syarat sempadan 
berolak

INTRODUCTION

The behaviour of boundary layer flow and heat transfer 
over a stretching sheet has been comprehensively studied 
until recently. Since the pioneering study by Crane (1970) 
on a viscous fluid over a linearly stretching plate, many 
aspects of this problem have been investigated by many 
authors. The flow with slip effect at the boundary for 
instance has been studied by Abbas et al. (2009), Andersson 
(2002), Fang et al. (2009) and Wang (2002). On the other 
hand, similar problems but without the slip effects have 
been considered by Dutta and Roy (1985), Elbashbeshy 
(1998), Ishak et al. (2006, 2007, 2009), Lin and Chen 
(1998), and Mahapatra and Gupta (2001) among others. 
	 The flow due to a shrinking sheet has attracted a 
considerable interest of many researchers recently due to 
its different behaviours in the flow dynamics compared to 
the stretching case. As mentioned by Miklavčič and Wang 
(2006), Wang (2008), Ishak et al. (2010) and Bhattacharyya 
et al. (2011), a steady boundary layer flow induced by a 
shrinking sheet is not possible since the vorticity generated 
in this case is not restricted inside the boundary layer. 
There are some other external forces that are needed to 
confine the vorticity within the boundary layer to make 
the steady flow possible. The non-uniqueness of steady 

viscous hydrodynamic flow due to a shrinking sheet for 
a specific value of the suction parameter was studied by 
Miklavčič and Wang (2006) and they have reported an 
exact solution of the Navier-Stokes equations. Hayat et 
al. (2008) investigated the MHD rotating flow of a second 
grade fluid over a porous shrinking surface using homotopy 
analysis method (HAM), while Noor and Hashim (2009) 
studied the MHD flow and heat transfer due to a shrinking 
sheet embedded in a fluid saturated porous medium. Fang 
et al. (2010) have solved the problem of the slip flow over 
a permeable shrinking surface using a second order slip 
flow model, where they presented an exact solution of the 
governing Navier-Stokes equations. Bachok et al. (2010) 
studied the unsteady three-dimensional boundary layer 
flow due to a permeable shrinking sheet, and found the 
existence of dual solutions in a certain range of the mass 
suction and the unsteadiness parameters. Very recently, 
Bhattacharyya and Layek (2011) investigated the effects 
of suction/blowing and thermal radiation on the steady 
boundary layer stagnation-point flow over a porous 
shrinking sheet. 
	  The study of uniform shear driven boundary layer 
flow is seen to have fewer contributors in fluid mechanics. 
One of the early researches was contributed by Weidman 
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and Kubitschek (1997) where they reported a similarity 
solution of the boundary layer flow over a flat impermeable 
plate with free-shear flows driven by rotational velocities 
U(y) = βyα with α > -2/3. Later, Magyari et al. (2003) 
extended this problem to a permeable flat plate by taking 
α = -2/3 and α = -1/2. The heat transfer characteristics over 
an impermeable flat plate in outer shear flow with exponent 
α = -1/2, and with an adiabatic wall has been considered by 
Magyari et al. (2004). Meanwhile, Cossali (2006) reported 
the similarity solutions of the energy and momentum 
boundary-layer equations for a power-law shear driven 
flow over a semi-infinite flat plate. The thermal boundary 
layer beneath an external uniform-shear flow was studied 
by Magyari and Weidman (2006). 
	  The boundary layer flow concerning a convective 
surface boundary condition for the Blasius flow has been 
discussed by Aziz (2009), while Magyari (2011) revisited 
this work, and obtained an exact solution for the temperature 
boundary layer in a compact integral form. Bataller (2008) 
investigated the same problem by considering radiation 
effects on Blasius and Sakiadis flows. Later, the effects of 
suction and injection and stretching/shrinking of the similar 
analysis have been studied by Ishak (2010) and Yao et al. 
(2011), respectively. Motivated by the above mentioned 
investigations, in the present paper we investigate the heat 
transfer characteristics of a viscous and incompressible 
fluid over a stretching/shrinking sheet in a uniform shear 
flow with a convective surface boundary condition.

PROBLEM FORMULATION

Consider a two dimensional steady boundary layer 
shear flow over a stretching/shrinking sheet of ambient 
temperature T∞, as shown in Figure 1. Following Magyari 
and Weidman (2006) it is assumed that the velocity of 
the stretching/shrinking sheet is uw(x) = Uw(x/L)1/3,  while 
the velocity of the free stream is ue(y) = βy, where x and 
y are Cartesian coordinates measured along the sheet and 
normal to it, respectively, L is the reference length, Uw  is 
the reference stretching/shrinking velocity of the sheet 
and β is a constant strain rate. Under the boundary layer 
approximations, the basic equations are:

	 	 (1)

	 	 (2)

	 	 (3)

where u and ν are the velocity components along the x and 
y axes, respectively, T is the fluid temperature, α is the 
thermal diffusivity and ν is the kinematic viscosity. The 
velocity boundary conditions can be expressed as:

	  at  y = 0,		  (4)

	 u = ue(y) = βy   as   y→∞.

	 Following Aziz (2009) and Ishak (2010), we assume 
the sheet surface temperature is maintained by convective 
heat transfer at a constant value Tw. Thus, the temperature 
boundary conditions are:

	 	
(5)

	 T = T
∞
   as    y → ∞

where k is the thermal conductivity of the fluid, hf is the 
convective heat transfer coefficient and Tf  is the convective 
fluid temperature below the moving sheet.
	 Following Magyari and Weidman (2006) and Aziz 
(2009), we look for a similarity solution of Eqs. (1) - (3) 
of the following form:

	 	 (6)

where ψ is the stream function, which is defined as      
u = �ψ/�y and ν = -�ψ/�x. A simple analysis shows that 
L = (ν/β)1/2. Substituting (6) into Eqs. (2) and (3), we 
obtain the following ordinary differential equations:

	 	 (7)

	 	 (8)

subject to the boundary conditions:

	 	 (9)

	 Here primes denote differentiation with respect to η,  
λ = Uw/(βν)1/2

 is the stretching/shrinking parameter and γ  
is given by:

	 	 (10)

	 For the thermal equation (8) to have a similarity 
solution, the quantity γ must be a constant and not a 
function of x as in Eq. (10). This condition can be met if 
the heat transfer coefficient hf is proportional to (x/L)-1/3. 
We, therefore assume:

y → ∞: ue(y) = βy
            T = T

∞

Incoming 
shear flow 
u = ue(y) 
T = T

∞

FIGURE 1. Physical model and coordinate system



	 	 1371

	 hf = c(x/L)-1/3	 (11)

where c is a constant. Thus, we have:

	 γ = cL/k,	 (12)

with γ defined by Eq. (12), the solutions of Eqs. (7) - (9) 
yield the similarity solutions. However, with γ defined 
by Eq. (10), the generated solutions are local similarity 
solutions. It should be mentioned that the constant 
temperature results are recovered by using a value of γ 
= ∞ in the boundary conditions (9), which then gives the 
condition θ (0) =1 (isothermal condition) and Eqs. (7)-
(9) are identical with Eqs. (7) and (8) from the paper by 
Magyari and Weidman (2006) when λ = 0 and m = 0. 
	 The quantities of physical interest are the skin friction 
coefficient and the local Nusselt number which are 
proportional to f ˝(0) and -θ́(0), respectively. Thus, our 
task is to investigate how these quantities vary with the 
governing parameters.

NUMERICAL METHOD

The nonlinear differential equations (7) and (8) along with 
the boundary conditions (9) form a two point boundary 
value problem (BVP) and are solved using a shooting 
method, by converting it into an initial value problem 
(IVP). In this method, we choose suitable finite values 
of η →∞, say η

∞
, which depend on the values of the 

parameters used. First, the system of equations (7) and 
(8) is reduced to a first-order system (by introducing new 
variables) as follows: 

	 f́ = p,   ṕ = q,   3q́+ 2fq – p2 = 0,	 (13)
							        	
	 θ́ = r,  + 2fr = 0,	 (14)

with the boundary conditions:

	 	 (15)

Now we have a set of ‘partial’ initial conditions

f (0) = 0, p(0) = λ, q(0) = α1, θ(0) = α2,  r(0) = -γ[1–α2].

	 As we notice, we do not have the values of q(0) and  
θ(0) (and r(0), i.e. α1 and α2). To solve Eqs. (13) and (14) 
as an IVP, we need the values of α1 and α2. By trial and 
error, we guess these values, and apply Runge-Kutta-
Fehlberg method in Maple software, and then see if this 
guess matches the boundary conditions at the very end. If 
we don’t succeed then we try and try again. Varying the 
initial slopes give rise to a set of profiles which suggest 
the trajectory of a projectile “shot” from the initial point. 
That initial slope is sought which results in the trajectory 
“hitting” the target, that is, the final value (Bailey et al. 
1968).

RESULTS AND DISCUSSION

The system of equations (7) – (9) was solved for some 
values of Prandtl number Pr, stretching/shrinking 
parameter λ and convective parameter γ. Since Eqs. (7) 
and (8) are uncoupled, the flow field is not affected by the 
thermal field. Thus, the convective parameter γ and the 
Prandtl number Pr have no effect on the flow field. For 
this reason, for each values of γ and Pr, the function f (η) 
and its derivatives are identical. 
	 The variation of the skin friction coefficient f˝(0)  with 
the stretching/shrinking parameter λ is presented in Figure 
2, while that of the local Nusselt number -θ́(0) for some 
values of Pr is presented in Figure 3. These figures show 
that solution exists for all positive values of the stretching/
shrinking parameter λ (stretching case), while for negative 
values of λ (shrinking case), there is a critical value λc, 
with two solution branches for λc <  λ < 0, a saddle-node 
bifurcation  λ = λc  and no solution for λ < λc.

FIGURE 2. Variation of the skin friction coefficient f˝(0) with 
stretching/shrinking parameter λ

FIGURE 3. Variation of the local Nusselt number -θ́(0) with 
stretching/shrinking parameter λ for some values of Prandtl 

number Pr when γ = 1
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	 Based on our computations, we found that λc = 
-0.6575. The selected values of -θ́(0) used to sketch Figure 
3 are given in Table 1.
	 We identify the upper and lower branch solutions in the 
following discussion by how they appear in Figures 2 and 
3, i.e. the upper branch solution has a higher value of  f˝(0) 
for a given λ, than the lower branch solution. The effects of 
the Prandtl number on the temperature profiles for λ = -0.2 
(shrinking case) are shown in Figure 4. It is seen that the 
upper branch solution yields a thinner thermal boundary 
layer thickness compared to the lower branch solution. 
The temperature profiles of the lower branch are inflated 
near the surface and the heat flux at the surface becomes 
very small. It is interesting to note how the temperature is 
distributed for the upper branch solution. With the increase 
of the Prandtl number, the temperature drops faster to the 
ambient temperature, thus increases the surface heat flux. 

Figure 5 also shows that the far field boundary conditions 
(9) are satisfied asymptotically, hence support the validity 
of the numerical results obtained, besides supporting the 
existence of the dual solutions shown in Figures 2 and 3. 
	 Figure 5 illustrates the effects of the stretching rate  
on the temperature profiles when Pr and γ are fixed to 
unity. It is seen that the boundary layer thickness become 
thinner as λ increases, thus increase the heat transfer rate 
at the surface -θ́(0) with increasing values of λ. Similar 
behaviours are observed for the shrinking case (λ < 0) for 
the upper branch solution (Figure 6(a)). On the other hand, 
the lower branch solution exhibit an analogous pattern of 
temperature distributions as can be seen in Figure 6(b). 
Moreover, the boundary layer thickness becomes thicker 
as λ increases. Figure 7 shows the effects of various values 
of convective parameter γ when Pr and λ are fixed to unity. 
The temperature distributions are found to be quite similar 

TABLE 1. Values of the local Nusselt number -θ́(0) for different values of stretching/shrinking parameter λ and 
Prandtl number Pr when the convective parameter γ = 1 

λ Pr
0.72 1 1.5 1.7

Stretching case
1 0.3971 0.4315 0.4757 0.4897
1.5 0.4206 0.4577 0.5048 0.5196
2 0.4401 0.4791 0.5282 0.5435
2.5 0.4568 0.4972 0.5477 0.5633
3 0.4714 0.5129 0.5644 0.5802
Shrinking case
-0.1 0.3145 (0.0051) 0.3372 (0.0011) 0.3661 (0.0001) 0.3751 (0)
-0.2 0.3021 (0.0170) 0.3227 (0.0068) 0.3486 (0.0012) 0.3566 (0.0005)
-0.3 0.2876 (0.0336) 0.3057 (0.0182) 0.3279 (0.0058) 0.3347 (0.0030)
-0.5 0.2466 (0.0827) 0.2571 (0.0635) 0.2680 (0.0392) 0.2706 (0.0288)
-0.6 0.2051 (0.1247) 0.2077 (0.1082) 0.2062 (0.0852) 0.2044 (0.0703)

*Results for the lower branch solution are given in parentheses.

FIGURE 4. Temperature profiles θ(η) for some values of Pr 
when λ = -0.2 and γ = 1

FIGURE 5. Temperature profiles θ(η) for some values of λ ( > 0) 
when Pr = 1 and γ = 1
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with those obtained by Aziz (2009) who considered the 
boundary layer flow over a static flat plate (λ = 0), and by 
Ishak (2010) for the permeable plate case. It is clear that 
the surface temperature θ(0) increases as γ increases. As 
reported by Aziz (2009), the parameter γ at any location 
x is proportional to the heat transfer coefficient associated 
with the hot fluid hf . The thermal resistance on the hot fluid 
side is inversely proportional to hf . Therefore, the hot fluid 
side convection resistance decreases as γ increases and 
hence, the surface temperature θ(0) increases.

CONCLUSION

The problem of steady boundary layer flow and heat 
transfer over a stretching/shrinking sheet in the presence 
of an external uniform shear flow with a convective 
surface boundary condition was studied numerically. 
Similarity solution for the thermal field is possible when 
the convective heat transfer from the lower surface is 
proportional to (x/L)-1/3, where x is the distance from the slot 
where the sheet is issued and L is the reference length. It 
was found that the heat transfer rate at the surface increases 
with increasing values of the convective parameter. Dual 

solutions were found to exist for the shrinking case, 
whereas for the stretching case, the solution is unique.
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